The Theory of Continental Drift and *Pangaea* Today:
A Prima Facie Rebuttal

Charles William Johnson

Earth/matrixX Editions
P.O. Box 231126
New Orleans, Louisiana 70183-1126
©2008 Copyrighted by Charles William Johnson
Essay Earth/matrixX 2008-01
The Continental Drift Thesis

The theory of continental drift is based mainly upon a superficial, *prima facie* interpretation of a perceived match between the coastlines of the continents of South America and Africa. Such a perception may have been derived from the predominance of the Atlantic Ocean view map of the world that essentially reflects a Western, Euro-centrist perspective of the globe. By placing the Atlantic Ocean at the center of the world map, the apparent coincidence between the eastern coastline of South America and the western coastline of Africa became more obvious, than say as on maps that had the Pacific Ocean as the center focus.
The theoretical oddity, in my mind, comes after that initial perception of a possible coincidence of continental coastlines. Based upon a few examples of animals that inhabit either side of the Atlantic Ocean, theorists like Alfred Wegener [he was not the first] proposed the drifting of the continents upon the face of the Earth. It was reasoned [sic] that since it was impossible for the marsupials to swim across the ocean, then surely the continents must have been joined at one time. Then, they stated that other shared features of the two cited continents further confirmed the idea of continental drift.

The fossil record was also cited, along with some of the shared geologic features were cited as reasons to substantiate their thesis about the continents drifting away from one another. They posited that all of the landmass on Earth [for some unknown reason], had become lumped together on one side of the Earth, and that this super-continent (Pangaea) had broken up [for some unknown reason], and the sub-continents (today’s continents) drifted across the face of the globe into their present-day locations [for some unknown and unrecognized reason].

The thesis regarding continental drift depended greatly upon a superficial analysis of the apparent juxtaposition between the continents of South America and Africa. The theory of continental drift depended upon and still depends upon the Eurocentrist map of a partial Atlantic view.
Previously, I have made extensive critical analyses of the theory of continental drift, mainly based upon the same world map utilizing the Atlantic View.

Sometimes, a USA-centered map is employed which allows for presenting both the Atlantic and Pacific Oceans as focal points. However, when the Pacific Ocean view is employed, as in this essay, then the symmetry of the continents becomes even more visible.
In the Atlantic Ocean view, the continent of Africa appears to be the focal point for an obvious centro-symmetry. It is this view that I analyzed specifically in the *Continental Extracts*.
The Atlantic Ocean view, illustrations from the *Continental Extracts*.
That initial break up supposedly occurred some 250 to 385 million years ago. It is fascinating to me how the continental drift theorists can imagine that the continents broke away in their original shapes that even today present a nearly 100% match between the coastlines of South America and Africa. That after all of their trials and tribulations of marching across the then super-ocean (which has gone without a name), suffered no significant wear-and-tear from water erosion on their shores.

Obviously, one may isolate an abstracted event and juxtapose the continents in this manner. But, this mere fact implies all kinds of modified relationships. In order to move the two continents into this position, just imagine everything else that must move along with them. It is a mind-boggling exercise. Drift theorists concentrated mainly upon this theoretical exercise, with little regard for what was happening in the oceans throughout the process.
Continental Drift emphasizes the jigsaw puzzle feature of the continents, whereby the continent of South America, along its eastern coastline, pulled away from the western coastline of the continent of Africa between 250 and 385 million years ago.

Instead of reflexive symmetry between the two cited continents, it is more a case of translation symmetry. When one omits the eastern part of Africa from the Nile River, the overlay becomes significant.

The most surprising effect of the break-up of these two continents is that the theorists of continental drift would have us believe that the coastlines and continental shelves of these two continents have remained intact during all of this time, with no effects from erosion of their encounter with the oceans.

Such being the theoretical case, then one would not expect to find any symmetry reflected in the different shapes of the landmass at this late stage of the geologic process. However, criticism was raised against the thesis of the matching shorelines and the response by continental drift theorists was to revise their interpretation to a possible match below the oceanic sea-level and then state that the nearly perfect match occurred between the continental shelves of South America and Africa. This effectively made it next to impossible for anyone to doubt the thesis about the two continents forming a physical match. No longer was a *prima facie* interpretation used, but one that effectively dropped off the cognitive radar screen.
Take a look at any map of the ocean floor on Earth, at the level of continental shelves, and there is no match. There appears a continuous, single landmass wrapped around the globe. But, even if a match did exist, this would mean that there was no water erosion upon the continental shelves of these two continents for around 300-plus million years.
The western and eastern shorelines of Africa and South America are an example of translation symmetry that reflects the same kinds of forces carving out their landmass on Earth in similar shapes and forms. I showed in the *Continental Extracts* how it is difficult, if not impossible, to believe that two continents that were ripped apart, wind up having their western profiles extremely similar in shape along the path of the Ecliptic.
The various theses regarding the drifting of the continents was revived after a lull in its popularity when scholar began studying the characteristics of the spreading of the sea-floors and the idea about tectonic plates during the Sixties. With that we have today’s general views about the continents randomly moving across the face of the globe, from a central point to a more balanced distribution of landmass. We have the landmass under the oceans (sea-floors) spreading from a linear event of mid-oceanic ridges with magma spewing from inside the Earth. And, we have eight main tectonic plates jostling around with one another colliding into one another, and running away from one another, in multitudinous directions.

Whenever maps of the tectonic plates and the continents are shown, the landmass of the continental shelves is omitted from such maps. Each isolated and separate continent is drawn upon a particular plate, a *prima facie* view that ignores its entire composition.
Geologists and geographers would have us believe that the continents drifted, pushing and dragging their delicate continental shelves along with them. Look at the recent oceanic maps and it becomes obvious that the continental landmass is continuous, wrapping itself around the globe. The continents cannot be separated at the level of their shelves either theoretically or practically.

The Earth’s crust is made up of continental crust and oceanic crust. The continental crust including the continental shelves is joined all around the globe. At sea-level the continents are obviously separated. But that is a *prima facie* view.

Pangaea Today at the Level of the Continental Shelves
The Pacific Ocean View
The Symmetry of the Two Hemispheres of Landmass on Earth

No doubt that movement in matter-energy exists, and the essential mass of land on Earth is no exception. The problem that I find with the thesis regarding the drifting of the continents is the degree to which the geologists and geographers of today contend that the continents actually move. I have a problem explaining to myself how the Moon formed from a vaporized cloud of the Pacific sea-floor mass. And, I have a problem explaining to myself how all of the above-sea-level landmass on Earth became a glob on one side of the Earth’s globe, so to speak. Then, I have a problem further explaining how this globe of landmass that for some unknown reason accumulated into a super-continent tore itself apart and sent its parts drifting across the face of the Earth, only to be told now that these continental parts are now marching together into another concentrated super-continental mass of land.

Life is mysterious, but is it as mysterious as the geologists and geographers purport; that is the question at hand. When a prima facie analysis is made of the continental landmass on the Pacific Ocean view map, instead of the more commonly published Atlantic Ocean view map, then the theses of continental drift appear to be simply ludicrous.
Throughout the Earth/matriX series of essays, I have been attempting to show why the theses about continental drift appear to be erroneous to me. In this brief essay, I further that critical analysis by drawing attention to the use of the Pacific Ocean view of the Mercator map as a means to refute the drift theses, be it equally at the *prima facie* superficial sea-level of the oceans.
In the *Continental Extracts* [www.earthmatrix.com] I showed the translation symmetry that exists between the continents of South America and Africa based on the Mercator map with the Atlantic Ocean view. The symmetries lie as of the relationship of the continents to the ecliptic plane.

It is difficult to believe that the super-continent of Pangaea broke up into random shapes that converged together and today are placed in such a fashion as to present an obvious symmetry between the two hemispheres of landmass on Earth. Remember, according to the drift theorists, the continents have retained their basic shapes since their inception. Therefore, for those randomly produced shapes to now come together and reveal two translation symmetry forms on either side of the globe denies all concepts of probability.

The Pacific Ocean view on the Mercator map offers an even more convincing perspective of the symmetries among not only the South American and African continents, but among almost all of the continents as illustrated in this study.

At this point, I am only offering a superficial, *prima facie* analysis of the symmetry of the continents. A more detailed analysis at other levels of geologic and geographic aspects will soon be published in volume two the *Eventpoint Cosmogeography.*
In order to conceptualize the symmetry between the two hemispheres of Earth, one need not submerge to the level of the continental shelves. Suffice it to make a superficial, prima facie analysis of the sea-level features of the continents. To do so, the use of the Pacific Ocean view on the world map becomes quite revealing.

For a moment, forget about everything occurring at all other levels of the geology and geography of the Earth. Concentrate on the outline forms of the continents with the Pacific Ocean as the central focal point of the globe map.
The symmetry between the hemispheres becomes apparent when Africa is removed from the geographical equation. Immediately, one perceives the suggested erosion aspects of the Earth’s landmass. Were we to analyze the ocean currents on this slide, the similarities of symmetry would become even more obvious. Just imagine the continent of Australia being projected further south, which would cause it to resemble the continent of South America in the other hemisphere.
The removal of the African continent from the map causes the translation symmetry between the two hemispheres to become extremely obvious. Again, just try to imagine the fulfillment of the theses about continent drift, that all of these pieces of landmass broke up into continental parts that somehow miraculously floated around on the face of the Earth until they all came together to form these two nearly exact twisted shapes. In fact, even Africa defines the symmetry by showing itself to be the centerpiece of a centro-symmetry with the two hemisphere on either of its sides.

Note the many erosion events on either hemisphere, confirming the translation symmetry of the landmass. Observe a few erosion entries shown by the arrows.
The degrees of longitude marked off on the globe demonstrate the nearly exact symmetry of the landmass on Earth when the continent of Africa is removed from view. To accept the idea that the super-continent Pangaea broke up into randomly shaped pieces of landmass, that floated and drifted around the surface of the globe until they came together and shaped the translation symmetry illustrated here one’s belief system.
Alignments of the North/South American continents with the Eurasia continent

Overlay of Hemispheres
Alignments of the North/South American continents with the Eurasia continent

Overlay of Hemispheres

Africa omitted
With regard to the Earth’s composition, all cannot be reduced to just the Eastern and Western hemispheres, as drift theorists have done. In the following slides the perspective of the Earth from overhead views of the North | South hemispheres are presented as the Earth travels throughout space.

The northern hemispheric view is particularly relevant to the theses regarding continental drift, as one considers the wrap-around embrace of the landmass on Earth in the northern latitudes. The twisting contours of the landmass also appear to be in accordance with the rotational movement of the Earth itself.
The head-on view of the Earth is the one that you would see were you out ahead along its path, looking as the Earth spiraling towards you on its path throughout the solar system. The tail-end view is what you would see as the Earth sped away from you leaving you in its cosmic dust.

As far as fluid mechanics may be concerned, it seems logical that the Earth’s landmass would be mainly in the Northern hemisphere where the effect of oceanic water erosion would be less than in the trailing part of the planet. It would seem logical that landmass would be more eroded from the force of oceanic water in the southern hemisphere.
Continental drift theorists would have us believe that the super-continent Pangaea existed in the Southern hemisphere and marched into the northern hemisphere, wrapping itself around the northern part of the globe as may be viewed here.

The twisted, spiraling aspect of the Earth’s landmass if not a result from its own contorted movements, then must reflect the effect of oceanic erosion. That would appear to be the logical explanation between the curves of the Antarctica and South American continents at their mutual tips.

The following slides represent distinct considerations from the perspective of the Equatorial center-point and the Ecliptic center-point of the Earth.
As the ecliptic plane is charted on small globes of the Earth, when one looks deadcenter onto the ecliptic plane the overhead view would be at the eventpoint indicated in this view for the northern hemisphere.
As the ecliptic plane is charted on small globes of the Earth, when one looks deadcenter onto the ecliptic plane the overhead view would be at the eventpoint indicated in this view for the northern hemisphere.
Precessional View at Leading Edge
The view looking deadcenter at the ecliptic plane from the Northern Hemisphere would be the rotational movement around the Arctic Circle as shown.
As the ecliptic plane is charted on small globes of the Earth, when one looks deadcenter onto the ecliptic plane the overhead view would be at the eventpoint indicated in this view for the **southern** hemisphere..
Antarctica to the Ecliptic Plane

Precessional View at Trailing End
The view looking deadcenter at the ecliptic plane from the Southern Hemisphere would be the rotational movement around the Antarctic Circle as shown.
Translation Symmetry in the Placement of Landmass on Earth:
A Sea-Level View
Drift theorists propose interpretations of the movement of the continents according to the superficial view of the water line between the landmasses and the ocean waters of the Earth. In an attempt to salvage the theory of continental drift or displacement, the match between the continental shelves of Africa (its west coast) and South America (its east coast) was employed.

Yet, when the entire outline of the continental shelves for all of the landmass on the Earth is taken into consideration the interpretations forwarded by the drift theorists come tumbling down. To insist upon the idea of the radical movement of continents as in drift theory, based upon a single matching pair of coastlines/shelves is completely partial.

Here, I shall examine the entire outline of the continental landmass in relation to the oceans.

Numbers 1 and 2 are the continental crustal mass of the Earth.

Number 3 represents the oceans of the Earth, upon which they sit on another main part of the crustal mass of the Earth.

The crustal mass of the continents (continents plus continental shelves) and the oceanic crustal mass, together, represent the crustal mass of the Earth.
The continents of North America and Eurasia are generally said to be two different continents. That occurs because scholars are making the identification at the water line of the oceans and the landmasses.

But, if the distinction is made at the level of the continental shelves, then no distinction can be made. For as the current maps of the ocean basins show, the two continents are actually one and the same with their continuous landmass. Even though at the water line, there exists only a 36-mile separation between the two continents at the Bering Strait, in reality the landmass itself is continuous with no break between them.

In fact, as we examine the matter further, one may notice a continuous continental landmass around the entire globe. Obviously, there exists a continuous landmass around the globe between the continental landmass and the ocean floor landmass. But, the common identification of the seven continents is misleading and allows for such theories as the drift theory of the continents.

In this view one may see how the entire northern and southern hemispheres of landmass, with the exception of the continent of Antarctica are linked as one continuous landmass at their continental shelves.

The super-continent of Pangaea, in fact, never separated as the theorists of drift have contended. For this to have happened the split would have had to occur where the current split exists between the singular landmass.

When the drift theorists speak about the supposed split between the continents of Africa and South America, the impression is given that all of the continents moved away from one another in a northerly direction. If we observe the water line of the continents of North America and Asia, it would appear as though these continents were coming together. When, in fact, they already exist joined together.

In my view, the landmass of the Earth existed as a single interconnected whole, and obviously still does, with the apparent exception of the continent of Antarctica. And, a case could be made to show that the continent of Antarctica was and is still connected to the southern tip of the continent of South America.
Now, imagine for a moment the supposed split or separation of the continents of Africa and South America as proposed by drift theorists. This would mean that upon splitting and separating, the African continent would travel in an eastward direction and the continent of South America would travel in a westward direction, supposedly pushing the North American and the continent of South America into one another.

These last two continents, however, according to today maps of the ocean floors and shelves of the continents, are already conjoined. In my mind, all of this pushing and shoving should have created great stress and strain around the Bering Strait, whereby even a mountain range should have come into existence. But, as the maps show, that particular area is extremely flat and without apparent tension.

With the amount of movement shown on most maps of Pangaea by drift theorists, one would expect a crunch around the meeting place of the Bering Strait, but there is none, either on their maps or in reality. And, this occurs, I consider, because the radical movement proposed by the drift theorists simply did not and does not exist.

We must remember that the continental landmass exists upon the face of a sphere, an enclosed globe. Any movement on one part of that globe necessarily affects any movement upon any other part of the globe; this is simply how matter-energy relate.

The continents of Africa and South America did not split apart, independently from one another, or independently from the rest of the landmass of which they form part and parcel. The radical movement of the supposed splitting apart of Africa and South America would necessarily impinge upon the rest of the continental landmass.

The identification of the seven continents, as separate entities, is in reality a definition produced by observations of the continental landmass meeting the waterline of the surface levels of the oceans. There are no seven continental landmass as such. Hence there is no separation as such. And, remember, I am not referencing the level of the tectonic plates. The maps of the ocean floors and continental landmass refer to the crustal level of the earth. The Earth has one crust, one skin covering, conjoined by the continental landmass and ocean floors.
We must remember that the continental landmass exists upon the face of a sphere, an enclosed globe. Any movement on one part of that globe necessarily affects any movement upon any other part of the globe; this is simply how matter-energy relate.

The continents of Africa and South America did not split apart, independently from one another, or independently from the rest of the landmass of which they form part and parcel. The radical movement of the supposed splitting apart of Africa and South America would necessarily impinge upon the rest of the continental landmass.

The identification of the seven continents, as separate entities, is in reality a definition produced by observations of the continental landmass meeting the waterline of the surface levels of the oceans. There are no seven continental landmass as such. Hence there is no separation as such. And, remember, I am not referencing the level of the tectonic plates. The maps of the ocean floors and continental landmass refer to the crustal level of the earth. The Earth has one crust, one skin covering, conjoined by the continental landmass and ocean floors.

The impression that I receive from viewing today’s map of the ocean floors and the continental landmass is that these are still conjoined throughout. Obviously the more obscure spaces assigned to the trenches signify a type of joint that is not continuous, but overlapping. The spaces of the openings of the mid-oceanic ridges forms yet another distinct type of joint. The mid-oceanic ridges, rightly so, may be considered as breaks in the Earth’s crust. Yet, from a global perspective, the crust of the Earth is obviously a single covering, with its overlapping areas in the trenches and the slit-like gaps of the ridges.

Note from this view, the manner in which the spatial placement of the continental landmass and the ocean floors (also landmass) reflects an evenly distributed proportion. The impression that taking into consideration the area of the continental shelves, there is a nearly equal distribution between the two types of landmass (oceans and continents).

The 70:30 percentage generally cited between the land and oceans of the Earth refers to the surface water lines where oceans meet the land.
The Earth’s Crust:
Continental Landmass and Ocean Floors

For the landmass to have separated between the eastern coast of South America and the western coast of Africa, then, the rest of the conjoined landmass would have had to stretch in order to obtain the present-day shape it finds itself in.

For, given the fact that the landmass was united during the so-called Pangaea stage, and is still conjoined today, then the 5000-6000 plus kilometers of separation between Africa and South America would have had an enormous effect upon the rest of the conjoined landmass.

The perspective of drift theorists view landmass separately, on different levels: 1) the visible continental surface landmass, sticking above the water level of the oceans against 2) the tectonic plates. Whereas in order to comprehend the make-up of the land, one must consider: 1) continental landmass (visible land above the water line plus the continental shelves) and then 2) the oceans (and their water basins).

An examination of the level of the shelves of the continents shows an appendage jutting off of Antarctica opposite the sub-continent of India. From this view, one may obtain the idea that the cutting action of the water around this appendage explains in part its very existence.
I do not find it surprising that the pattern of the Atlantic Ocean splitting off, biforking around Greenland appears to be similar to that of the Red Sea with its two angular sections to north of it as well. The patterns have to do with the scalar proportion of the same laws being at work.

With the action of the water visibly in a more random state at the level of the continental shelves and ocean floors, one would not expect to find the kind of symmetries and scalar proportions as found between the extreme points and event points as enunciated in this study.
Observations of the *Prima Facie* Rebuttal to the Theory of Continental Drift

In this analysis, I have analyzed the landmass of the Earth from at sea-level from a very superficial perspective. This analysis represents an extension of that presented similarly in the Continental Extracts (www.earthmatrix.com). Unlike that analysis, however, I have employed the world map with the Pacific Ocean view, which to my mind is even more convincing in showing the symmetries of the distribution of landmass on Earth. The theoretical posit in these analyses is that if there are symmetries in the distribution of continental landmass, then the theses regarding the random drifting of the continents must certainly be erroneous.

As illustrated in this analysis, the symmetries abound throughout different aspects of the composition of the Earth’s landmass, even at this very superficial level of analysis of the Earth’s sea-level view. At the level of continental shelves, the continuous nature of landmass is even more patent; denying any aspect of separate continental entities drifting in relationship to one another. The Earth’s crust is one, red mud and ooze; continental landmass and oceanic floor landmass.

In *Eventpoint Cosmogeography*, I analyzed specific distances among geographic extreme points and astronomical events (the ecliptic, the nodes, the poles, etc.).
It is time to analyze the Earth’s crust in relationship to other phenomena involved in the composition of the Earth itself. Volume Two of *Eventpoint Cosmogeography*, to be published shortly, will treat other aspects of geologic and geographic measurement that account for how the continents evolved and now exist.

The *prima facie*, superficial analysis of where landmass meets water, the sea-level aspect of Earth, may be interpreted in distinct manners. One cannot, however, account for the obvious symmetries between the Western and Eastern hemispheres as shown in this study by stating that once the continents moved into place, the oceanic waters eroded them into the symmetrical shapes as perceived here. For remember, the drift theorists are telling us that they have a scientific match between the coastlines (or continental shelves) of the continents of Africa and South America approaching a near perfect match. In other words, for over 300 million years, these two continents traveled the Earth and suffered no oceanic erosion; had they suffered such erosion, there could be no match as the scientists purport to have found.

The next theoretical step then is to illustrate the level that will explain what are the reasons for certain characteristics of the *continental and oceanic landmass* on Earth. That is coming in the second tome of *Eventpoint Cosmogeography*.
The Theory of Continental Drift and *Pangaea* Today: A *Prima Facie* Rebuttal

Charles William Johnson

Earth/matriX Editions
P.O. Box 231126
New Orleans, Louisiana 70183-1126
Essay Earth/matriX 2008-01